1. Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: Problems and Prospects, Endocr Rev. 1998; 19:477–490.
2. Schneider SH. Studies on the mechanism or improves glucose control during regular exercise in type Ⅱ(non-insulin-dependent) diabetes. Diabetologia. 1984; 26:355–360.
3. Shepherd PR, Kahn BB. Glucose transporters and insulin action - Implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999; 341:248–257.
4. Kirwan JP, Del Aguila LF, Hernandez JM, et al. Regular exercise enhances insulin activation of IRS-1-associated PI3-kinase in human skeletal muscle. J Appl Physiol. 2000; 88:797–803.
5. Goodyear LJ, Hirshman MF, Smith RJ, Horton ES. Glucose transporter number, activity and isoform content in plasma membranes of red and white skeletal muscle. Am J Physiol. 1991; 261:E556–E561.
6. Kawanaka K, Higuchi M, Ohmori H, Shimegi S, Ezaki O, Katsuta S. Muscle contractile activity modulates GLUT4 protein content in the absence of insulin. Horm Metab Res. 1996; 28:75–80.
7. Host HH, Hansen PA, Nolte LA, Chen MM, Holloszy JO. Rapid reversal of adaptative increases in muscle GLUT-4 and glucose transport capacity after training cessation. J Appl Physiol. 1998; 4:798–802.
8. Kuo CH, Browning KS, Ivy JL. Regulation of GLUT-4 protein expression and glycogen storage after prolonged exercise. Acta Pysiol Scand. 1999; 165:193–201.
9. Hardie DG, Hawley SA. AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge hypothesis revisited. Bio Essay. 2001; 23:1112–1119.
10. Brozinick JT, Etgen GJ, Yaspelkis BB, Ivy JL. Glucose uptake and GLUT-4 protein distribution in skeletal muscle of obese Zucker rat. Am J Physiol. 1994; 267:R236–243.
11. Gao J, Ren J, Gulve EA, Holloszy JO. Additive effect of contractions and insulin on GLUT-4 translocation into the sarcolemma. J Appl Physiol. 1994; 77:1597–1601.
12. Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol. 1999; 277:1–10.
14. Lanford J, Viese M, Ploung T, Dela F. Time course of GLUT-4 and AMPK protein expression in human skeletal msucle during one month of physical training. Scand J Med Sci Sport. 2003; 13:169–174.
15. Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol. 2005; 99:330–337.
16. Del Aguila LF, Krishnan JS, Ulbrecht PA, et al. Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. Am J Phyol. 2000; 279:E206–E212.
17. Kirwan JP, Hickner RC, Yarasheski KE, Kohrt WM, Wiethop BV, Holloszy JO. Eccentric exercise induces transient insulin resistance in healthy individuals J Appl Physiol. 1992; 72:2197–2202.
18. Asp S, Richter EA. Decreased insulin action in muscle glucose transport after eccentric contractions in rats. J Appl Physiol. 1996; 81:1924–1928.
20. Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV. Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol. 1979; 47(6): 1278–1283.
21. Armstrong RB, Ogilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol Respirt Environ. 1983; 54(1): 80–93.
22. Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998; 49:235–261.
26. Zeppetzauer M, Drexel H, Vonbank A, Rein P, Aczel S, Saely CH. Eccentric endurance exercise economically improves metabolic and inflammatory risk factors. Euro J Preven Cardio. 2013; 20(4): 577–584.
28. Hardie DG, Carling D. The AMP-activated protein kinase fuel gauge of the mammalian cell? Eur J Biochem. 1997; 246:259–273.
29. Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol. 2001; 91:1017–1028.
30. Bergeron R, Previs SF, Cline GW, et al. Effect of 5-aminoimidazole -4- carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes. 2001; 50:1076–1082.
31. Buhl ES, Jessen N, Schmitz O, et al. Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-Dribofuranoside increases insulin-stimulated glucose uptake and GLUT-4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes. 2001; 50:12–17.