1. Bobbert MF, Gerritsen KG, Litjens MC, Van Soest AJ. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996; 28(11): 1402–1412.
2. Harman EA, Rosenstein MT, Frykman PN, Rosenstein RM. The effects of arms and countermovement on vertical jumping. Med Sci Sports Exerc. 1990; 22(6): 825–833.
3. Hasson CJ, Dugan EL, Doyle TL, Humphries B, Newton RU. Neuromechanical strategies employed to increase jump height during the initiation of the squat jump. J Electromyogr Kinesiol. 2004; 14(4): 515–521.
6. Requena B, García I, Requena F, de Villarreal ES-S, Pääsuke M. Reliability and validity of a wireless microelectromechanicals based system (Keimove™) for measuring vertical jumping performance. J Sports Sci Med. 2012; 11(1): 115–122.
7. Aragón LF. Evaluation of four vertical jump tests: Methodology, reliability, validity, and accuracy. Meas Phys Edu Exer Ssci. 2000; 4(4): 215–228.
8. Leard JS, Cirillo MA, Katsnelson E, et al. Validity of two alternative systems for measuring vertical jump height. J Strength Cond Res. 2007; 21(4): 1296–1299.
9. Linthorne NP. Analysis of standing vertical jumps using a force platform. Am J Physics. 2001; 69(11): 1198–1204.
10. Dias JA, Dal Pupo J, Reis DC, et al. Validity of two methods for estimation of vertical jump height. J Strength Cond Res. 2011; 25(7): 2034–2039.
11. Buckthorpe M, Morris J, Folland JP. Validity of vertical jump measurement devices. J Sports Sci. 2012; 30(1): 63–69.
12. Ryan ED, Everett KL, Smith DB, et al. Acute effects of different volumes of dynamic stretching on vertical jump performance, flexibility and muscular endurance. Clin Physiology Funct Imaging. 2014; 34(6): 485–492.
13. Balsalobre-Fernández C, Tejero-González CM, del Campo-Vecino J, Bavaresco N. The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps. J Strength Cond Res. 2014; 28(2): 528–533.
14. Balsalobre-Fernández C, Glaister M, Lockey RA. The validity and reliability of an iPhone app for measuring vertical jump performance. J Sports Sci. 2015; 33(15): 1574–1579.
15. Hunnicutt JL, Elder CL, Dawes JJ, Sinclair Elder AJ. The Effects of a Plyometric Training Program on Jump Performance in Collegiate Figure Skaters: A Pilot Study. Int J Exerc Sci. 2016; 9(2): 175–186.
17. Glatthorn JF, Gouge S, Nussbaumer S, Stauffacher S, Impellizzeri FM, Maffiuletti NA. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J Strength Cond Res. 2011; 25(2): 556–560.
18. Moir GL. Three different methods of calculating vertical jump height from force platform data in men and women. Meas Phys Edu Exerc Sci. 2008; 12(4): 207–218.
19. Lee M, Kim S, Choi H-M, Park J. Ankle or knee joint cooling alters countermovement but not squat jump height in healthy collegiate athletes. Isokinet Exerc Sci. 2016; (Preprint). 1–8.
20. Thomas JR, Silverman S, Nelson J. Research Methods in Physical Activity, 7E. Human kinetics;; 2015.
21. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005; 19(1): 231–240.
22. Hutchison AT, Stone AL. Validity of alternative field system for measuring vertical jump height. J Exerc Phys Online. 2009; 12(3): 6–11.
23. Nuzzo JL, Anning JH, Scharfenberg JM. The reliability of three devices used for measuring vertical jump height. J Strength Cond Res. 2011; 25(9): 2580–2590.